struct Geode::Vector2(T)
- Geode::Vector2(T)
- Geode::VectorBase(T, 2)
- Struct
- Value
- Object
Overview
Vector containing two components. Provides a collection of scalars of the same type.
T is the scalar type.
Defined in:
geode/vectors/vector2.crConstructors
-
.new(x : T, y : T)
Creates a vector from its components.
-
.new(components : Tuple(T, T))
Creates a vector from its components.
-
.new(array : StaticArray(T, 2))
Constructs the vector with pre-existing values.
-
.new(other : CommonVector(T, 2))
Copies the contents of another vector.
-
.new(&)
Constructs the vector by yielding for each component.
Class Method Summary
-
.[](x : T, y : T)
Constructs a vector with existing components.
-
.[](x, y)
Constructs a vector with existing components.
Instance Method Summary
-
#angle : Number
Computes the rotation of the vector.
-
#rotate(angle : Number | Angle) : Vector2
Computes a new vector from rotating this one.
-
#signed_angle(other : CommonVector(U, 2)) : Number forall U
Computes the angle between this vector and another.
-
#signed_angle : Number
Computes the rotation of the vector.
-
#to_column : Matrix2x1(T)
Converts this vector to a column vector, in other words a matrix with one column.
-
#to_row : Matrix1x2(T)
Converts this vector to a row vector, in other words a matrix with one row.
-
#tuple : Tuple(T, T)
Retrieves the components as a tuple.
-
#x : T
Retrieves the x component.
-
#y : T
Retrieves the y component.
Instance methods inherited from struct Geode::VectorBase(T, 2)
map(& : T -> U) : CommonVector forall U
map,
to_slice : Slice(T)
to_slice,
to_unsafe : Pointer(T)
to_unsafe,
unsafe_fetch(index : Int)
unsafe_fetch
Constructor methods inherited from struct Geode::VectorBase(T, 2)
new(array : StaticArray(T, N))new(other : CommonVector(T, M)) forall M
new(&) new, zero : self zero
Instance methods inherited from module Geode::CommonVector(T, 2)
inspect(io : IO) : Nil
inspect,
map(& : T -> U) : CommonVector forall U
map,
map_with_index(offset = 0, & : T, Int32 -> U) : CommonVector(U, N) forall U
map_with_index,
size
size,
to_s(io : IO) : Nil
to_s,
zip_map(other : CommonVector(U, N), & : T, U -> V) : CommonVector(V, N) forall U, V
zip_map
Instance methods inherited from module Geode::VectorOperations(2)
&*(scalar : Number) : CommonVector
&*,
&+(other : CommonVector(T, N)) : CommonVector forall T
&+,
&-(other : CommonVector(T, N)) : CommonVector forall T
&-,
*(scalar : Number) : CommonVector
*,
+(other : CommonVector(T, N)) : CommonVector forall T
+,
-(other : CommonVector(T, N)) : CommonVector forall T- : self -, /(scalar : Number) : CommonVector /, //(scalar : Number) : CommonVector //, abs : self abs, abs2 : self abs2, ceil : self ceil, clamp(min : CommonVector(T, N), max : CommonVector(T, N)) : CommonVector forall T
clamp(min, max) : CommonVector
clamp(range : Range(CommonVector(T, N), CommonVector(T, N))) : CommonVector forall T
clamp(range : Range) : CommonVector clamp, edge(edge : CommonVector(T, N)) : self forall T
edge(edge : T) : self forall T edge, floor : self floor, fraction : self fraction, lerp(other : CommonVector(T, N), t : Number) : CommonVector forall T lerp, round(mode : Number::RoundingMode = :ties_even) : self
round(digits : Number, base = 10, *, mode : Number::RoundingMode = :ties_even) : self round, scale(vector : CommonVector(T, N)) : CommonVector forall T
scale(amount : Number) : CommonVector scale, scale!(vector : CommonVector(T, N)) : CommonVector forall T
scale!(amount : Number) : CommonVector scale!, sign : self sign
Instance methods inherited from module Geode::VectorMatrices(T, 2)
&*(matrix : CommonMatrix(U, M, M)) : CommonVector forall U, M
&*,
*(matrix : CommonMatrix(U, M, M)) : CommonVector forall U, M
*,
to_column : CommonMatrix
to_column,
to_row : CommonMatrix
to_row
Instance methods inherited from module Geode::VectorGeometry(2)
angle(other : CommonVector(T, N)) : Number forall T
angle,
dot(other : CommonVector(T, N)) forall T
dot,
dot!(other : CommonVector(T, N)) forall T
dot!,
forward(surface : CommonVector(T, N)) : CommonVector forall T
forward,
length
length,
mag
mag,
mag2
mag2,
normalize : CommonVector
normalize,
project(other : CommonVector(T, N)) : CommonVector forall T
project,
reflect(surface : CommonVector(T, N)) : CommonVector forall T
reflect,
refract(surface : CommonVector(T, N), eta : Number) : CommonVector forall T
refract,
scale_to(length : Number) : CommonVector
scale_to
Instance methods inherited from module Geode::VectorComparison(2)
==(other : CommonVector(T, N)) forall T
==,
compare(other : CommonVector(T, N)) : CommonVector(Int32, N) forall T
compare,
eq?(other : CommonVector(T, N)) : CommonVector(Bool, N) forall T
eq?,
ge?(other : CommonVector(T, N)) : CommonVector(Bool, N) forall T
ge?,
gt?(other : CommonVector(T, N)) : CommonVector(Bool, N) forall T
gt?,
le?(other : CommonVector(T, N)) : CommonVector(Bool, N) forall T
le?,
lt?(other : CommonVector(T, N)) : CommonVector(Bool, N) forall T
lt?,
near_zero?(tolerance)
near_zero?,
zero?
zero?
Constructor Detail
Constructs the vector by yielding for each component.
The value of each component should be returned from the block. The block will be given the index of each component as an argument.
Vector2(Int32).new { |i| i * 5 } # => (0, 5)
Class Method Detail
Constructs a vector with existing components.
The type of the components is derived from the type of each argument.
Vector2[1, 2] # => (1, 2)
Constructs a vector with existing components.
The type of the components is specified by the type parameter. Each value is cast to the type T.
Vector2F[1, 2] # => (1.0, 2.0)
Instance Method Detail
Computes the rotation of the vector.
Returns the value as radians. The value will be between 0 and 2 pi.
Vector2[1, 1].angle # => 0.785398163
Computes a new vector from rotating this one.
The angle must be a Number
in radians or an Angle
.
Vector2[1.0, 1.0].rotate(180.degrees) # => (-1.0, -1.0)
Computes the angle between this vector and another.
Returns the value as radians. The value will be between -pi and +pi.
The smallest angle between the vectors is calculated.
Positive values indicate that the other vector can be reached by rotating this vector in a positive direction. On a standard coordinate system, this means rotating counter-clockwise. Negative values indicate the opposite - clockwise rotation.
Vector2[1, 1].signed_angle(Vector2[-1, 0]) # => 2.35619449
Vector2[1, 1].signed_angle(Vector2[1, -1]) # => -1.570796327
Computes the rotation of the vector.
Returns the value as radians. The value will be between -pi and +pi.
Vector2[1, 1].signed_angle # => 0.785398163
Vector2[-1, -1].signed_angle # => -2.35619449
Converts this vector to a column vector, in other words a matrix with one column.
vector = Vector2[1, 2]
vector.to_column # => [[1], [2]]
Converts this vector to a row vector, in other words a matrix with one row.
vector = Vector2[1, 2]
vector.to_row # => [[1, 2]]