struct Geode::Matrix(T, M, N)
- Geode::Matrix(T, M, N)
- Struct
- Value
- Object
Overview
Generic matrix type. Provides a rectangular array of scalars of the same type.
T is the scalar type. M and N are positive integers indicating the number of rows and columns respectively. Indices i and j refer to the zero-based row and column index respectively. Unless noted otherwise, all operations are in row-major order.
Included Modules
Defined in:
geode/matrices/matrix.crConstructors
-
.identity : self
Creates an identity matrix.
-
.new(matrix : CommonMatrix(T, M, N))
Copies contents from another matrix.
-
.new(&)
Creates a new matrix by iterating through each element.
-
.new(rows : Indexable(Indexable(T)))
Creates a new matrix from nested collections.
-
.new(elements : Indexable(T))
Creates a new matrix from a flat collection of elements.
-
.new(scalar : T) : self
Creates a new matrix with the diagonal elements set to a scalar value.
-
.zero : self
Creates a matrix filled with zeroes.
Class Method Summary
-
.[](*rows)
Constructs a matrix with existing elements.
Instance Method Summary
-
#&*(other : CommonMatrix(U, N, P)) : Matrix forall U, P
Multiplies this matrix by another.
-
#*(other : CommonMatrix(U, N, P)) : Matrix forall U, P
Multiplies this matrix by another.
-
#map(& : T -> U) : Matrix forall U
Returns a new matrix with elements mapped by the given block.
-
#sub(i : Int, j : Int) : CommonMatrix
Returns a smaller matrix by removing a row and column.
-
#to_slice : Slice(T)
Returns a slice that points to the elements in this matrix.
-
#to_unsafe : Pointer(T)
Returns a pointer to the data for this matrix.
-
#transpose : Matrix(T, N, M)
Returns a new matrix that is transposed from this one.
-
#unsafe_fetch(index : Int)
Retrieves the scalar value of the component at the given index, without checking size boundaries.
Macro Summary
-
[](*rows)
Constructs a matrix with existing elements.
Instance methods inherited from module Geode::SquareMatrix(T, M, N)
determinant
determinant,
diagonal : CommonVector(T, N)
diagonal,
each_diagonal(& : T -> _) : Nileach_diagonal : Iterator(T) each_diagonal, inv inv, inverse inverse, trace trace
Instance methods inherited from module Geode::CommonMatrix(T, M, N)
[](i : Int, j : Int) : T
[],
[]?(i : Int, j : Int) : T | Nil
[]?,
column(j : Int) : CommonVector(T, M)
column,
column?(j : Int) : CommonVector(T, M) | Nil
column?,
columns : Int
columns,
columns_at(*indices) : Tuple
columns_at,
each_column(& : CommonVector(T, M) -> _)
each_column,
each_column_with_index(offset = 0, & : CommonVector(T, M), Int32 -> _)
each_column_with_index,
each_indices(& : Int32, Int32 -> _)
each_indices,
each_row(& : CommonVector(T, N) -> _)
each_row,
each_row_with_index(offset = 0, & : CommonVector(T, N), Int32 -> _)
each_row_with_index,
each_with_indices(& : T, Int32, Int32 -> _)
each_with_indices,
inspect(io : IO) : Nil
inspect,
map(& : T -> U) : CommonMatrix forall U
map,
map_with_index(offset = 0, & : T, Int32 -> U) : CommonMatrix(U, M, N) forall U
map_with_index,
map_with_indices(& : T, Int32, Int32 -> U) : CommonMatrix(U, M, N) forall U
map_with_indices,
row(i : Int) : CommonVector(T, N)
row,
row?(i : Int) : CommonVector(T, N) | Nil
row?,
rows : Int
rows,
rows_at(*indices) : Tuple
rows_at,
size
size,
square?
square?,
to_columns : Array
to_columns,
to_rows : Array
to_rows,
to_s(io : IO) : Nil
to_s,
unsafe_fetch(i : Int, j : Int) : T
unsafe_fetch,
unsafe_fetch_column(j : Int) : CommonVector(T, M)
unsafe_fetch_column,
unsafe_fetch_row(i : Int) : CommonVector(T, N)
unsafe_fetch_row,
zip_map(other : CommonMatrix(U, M, N), & : T, U -> V) : CommonMatrix(V, M, N) forall U, V
zip_map
Instance methods inherited from module Geode::MatrixVectors(M, N)
&*(vector : CommonVector(U, P)) : CommonVector forall U, P
&*,
*(vector : CommonVector(U, P)) : CommonVector forall U, P
*,
column?
column?,
row?
row?,
to_vector : CommonVector
to_vector
Instance methods inherited from module Geode::MatrixOperations(M, N)
&*(scalar : Number) : CommonMatrix
&*,
&+(other : CommonMatrix(T, M, N)) : CommonMatrix forall T
&+,
&-(other : CommonMatrix(T, M, N)) : CommonMatrix forall T
&-,
*(scalar : Number) : CommonMatrix
*,
+(other : CommonMatrix(T, M, N)) : CommonMatrix forall T
+,
-(other : CommonMatrix(T, M, N)) : CommonMatrix forall T- : self -, /(scalar : Number) : CommonMatrix /, //(scalar : Number) : CommonMatrix //, abs : self abs, abs2 : self abs2, ceil : self ceil, clamp(min : CommonMatrix(T, M, N), max : CommonMatrix(T, M, N)) : CommonMatrix forall T
clamp(min, max) : CommonMatrix
clamp(range : Range(CommonMatrix(T, M, N), CommonMatrix(T, M, N))) : CommonMatrix forall T
clamp(range : Range) : CommonMatrix clamp, edge(edge : CommonMatrix(T, M, N)) : self forall T
edge(edge) : self edge, floor : self floor, fraction : self fraction, lerp(other : CommonMatrix(T, M, N), t : Number) : CommonMatrix forall T lerp, round(mode : Number::RoundingMode = :ties_even) : self
round(digits : Number, base = 10, *, mode : Number::RoundingMode = :ties_even) : self round, scale(matrix : CommonMatrix(T, M, N)) : CommonMatrix forall T scale, scale!(matrix : CommonMatrix(T, M, N)) : CommonMatrix forall T scale!, sign : self sign
Instance methods inherited from module Geode::MatrixIterators(T, M, N)
each_column : Iterator(CommonVector(T, M))
each_column,
each_column_with_index(offset = 0) : Iterator(Tuple(CommonVector(T, M), Int32))
each_column_with_index,
each_indices : Iterator(Tuple(Int32, Int32))
each_indices,
each_row : Iterator(CommonVector(T, N))
each_row,
each_row_with_index(offset = 0) : Iterator(Tuple(CommonVector(T, N), Int32))
each_row_with_index,
each_with_indices : Iterator(Tuple(T, Int32, Int32))
each_with_indices
Instance methods inherited from module Geode::MatrixComparison(M, N)
==(other : CommonMatrix(T, M, N)) forall T
==,
compare(other : CommonMatrix(T, M, N)) : CommonMatrix(Int32, M, N) forall T
compare,
eq?(other : CommonMatrix(T, M, N)) : CommonMatrix(Bool, M, N) forall T
eq?,
ge?(other : CommonMatrix(T, M, N)) : CommonMatrix(Bool, M, N) forall T
ge?,
gt?(other : CommonMatrix(T, M, N)) : CommonMatrix(Bool, M, N) forall T
gt?,
le?(other : CommonMatrix(T, M, N)) : CommonMatrix(Bool, M, N) forall T
le?,
lt?(other : CommonMatrix(T, M, N)) : CommonMatrix(Bool, M, N) forall T
lt?,
near_zero?(tolerance)
near_zero?,
zero?
zero?
Constructor Detail
Creates an identity matrix.
An identity matrix is a square matrix with ones along the diagonal and zeroes elsewhere. Raises a compilation error if M and N are not the same (producing a square matrix).
Matrix(Int32, 3, 3).identity
# => [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
Creates a new matrix by iterating through each element.
Yields the indices (i and j) for the matrix element. The block should return the value to use for the corresponding element.
Matrix(Int32, 3, 3).new { |i, j| i * 10 + j }
# => [[0, 1, 2], [10, 11, 12], [20, 21, 22]]
Creates a new matrix from nested collections.
The size of rows must be equal to the type argument M. Each row of elements in rows must have a size equal to the type argument N.
Matrix(Int32, 3, 2).new([[10, 20], [30, 40], [50, 60]])
# => [[10, 20], [30, 40], [50, 60]]
Matrix(Int32, 3, 2).new({{10, 20}, {30, 40}, {50, 60}})
# => [[10, 20], [30, 40], [50, 60]]
Creates a new matrix from a flat collection of elements.
The size of elements must be equal to M x N. Items in elements are consumed in row-major order.
Matrix(Int32, 3, 2).new([1, 2, 3, 4, 5, 6])
# => [[1, 2], [3, 4], [5, 6]]
Creates a new matrix with the diagonal elements set to a scalar value.
The main diagonal will be filled with scalar. All other elements will be zeroes. Raises a compilation error if M and N are not the same (producing a square matrix).
Matrix(Int32, 3, 3).new(5)
# => [[5, 0, 0], [0, 5, 0], [0, 0, 5]]
Creates a matrix filled with zeroes.
Matrix(Int32, 2, 2).zero
# => [[0, 0], [0, 0]]
Class Method Detail
Constructs a matrix with existing elements.
The type of the elements is specified by the type parameter. Each value is cast to the type T.
Matrix(Float32, 3, 3)[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# => [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]
Instance Method Detail
Multiplies this matrix by another.
The other matrix's row count (M) must be equal to this matrix's column count (N). Produces a new matrix with the row count from this matrix and the column count from other. Matrices can be of any size and type as long as this condition is met.
Values will wrap instead of overflowing and raising an error.
m1 = Matrix[[1, 2, 3], [4, 5, 6]]
m2 = Matrix[[1, 2], [3, 4], [5, 6]]
m1 &* m2 # => [[28, 29], [49, 64]]
Multiplies this matrix by another.
The other matrix's row count (M) must be equal to this matrix's column count (N). Produces a new matrix with the row count from this matrix and the column count from other. Matrices can be of any size and type as long as this condition is met.
m1 = Matrix[[1, 2, 3], [4, 5, 6]]
m2 = Matrix[[1, 2], [3, 4], [5, 6]]
m1 * m2 # => [[28, 29], [49, 64]]
Returns a new matrix with elements mapped by the given block.
matrix = Matrix[[1, 2], [3, 4], [5, 6]]
matrix.map { |e| e * 2 } # => [[2, 4], [6, 8], [10, 12]]
Returns a smaller matrix by removing a row and column.
The row indicated by i and the column indicated by j are removed in the resulting matrix. This method can only be called if the matrix has two or more rows and columns.
matrix = Matrix[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
matrix.sub(1, 1) # => [[1, 3], [7, 9]]
Returns a pointer to the data for this matrix.
The elements are tightly packed and ordered consecutively in memory.
Returns a new matrix that is transposed from this one.
matrix = Matrix[[1, 2, 3], [4, 5, 6]]
matrix.transpose # => [[1, 4], [2, 5], [3, 6]]
Retrieves the scalar value of the component at the given index, without checking size boundaries.
End-users should never invoke this method directly.
Instead, methods like #[]
and #[]?
should be used.
This method should only be directly invoked if the index is certain to be in bounds.
Macro Detail
Constructs a matrix with existing elements.
The type of the components is derived from the type of each argument. The size of the vector is determined by the number of components.
Matrix[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# => [[1, 2, 3], [4, 5, 6], [7, 8, 9]]