class CrystalML::Regression::RandomForestRegression
- CrystalML::Regression::RandomForestRegression
- CrystalML::SupervisedEstimator
- CrystalML::BaseEstimator
- Reference
- Object
Included Modules
Defined in:
regression/random_forest_regression.crConstructors
Instance Method Summary
- #fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64)))
- #max_depth : Int32
- #max_depth=(max_depth : Int32)
- #min_size : Int32
- #min_size=(min_size : Int32)
- #n_trees : Int32
- #n_trees=(n_trees : Int32)
- #predict(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64))
- #trees : Array(DecisionTreeRegression)
- #trees=(trees : Array(DecisionTreeRegression))
Instance methods inherited from module CrystalML::Regressor
predict(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64))predict(data : Array(Array(Float64)) | Crysda::DataFrame) : Tensor(Float64, CPU(Float64)) predict
Instance methods inherited from class CrystalML::SupervisedEstimator
fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64)))fit(data : Tensor(Float64, CPU(Float64)) | Array(Array(Float64)) | Crysda::DataFrame, target : Tensor(Float64, CPU(Float64)) | Array(Array(Float64)) | Array(Float64) | Crysda::DataFrame) fit
Constructor Detail
Instance Method Detail
def fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64)))
#