class CrystalML::Regression::BayesianRegression
- CrystalML::Regression::BayesianRegression
- CrystalML::SupervisedEstimator
- CrystalML::BaseEstimator
- Reference
- Object
Included Modules
Defined in:
regression/bayesian_regression.crConstructors
Instance Method Summary
-
#alpha : Float64
Hyperparameters for the prior distribution
-
#alpha=(alpha : Float64)
Hyperparameters for the prior distribution
- #beta : Float64
- #beta=(beta : Float64)
- #covariance : Tensor(Float64, CPU(Float64))
- #covariance=(covariance : Tensor(Float64, CPU(Float64)))
- #fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64)))
- #mean : Tensor(Float64, CPU(Float64))
- #mean=(mean : Tensor(Float64, CPU(Float64)))
- #predict(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64))
- #predict_variances(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64))
Instance methods inherited from module CrystalML::Regressor
predict(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64))predict(data : Array(Array(Float64)) | Crysda::DataFrame) : Tensor(Float64, CPU(Float64)) predict
Instance methods inherited from class CrystalML::SupervisedEstimator
fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64)))fit(data : Tensor(Float64, CPU(Float64)) | Array(Array(Float64)) | Crysda::DataFrame, target : Tensor(Float64, CPU(Float64)) | Array(Array(Float64)) | Array(Float64) | Crysda::DataFrame) fit
Constructor Detail
Instance Method Detail
def fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64)))
#
def predict_variances(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64))
#