class CrystalML::Classification::RandomForestClassifier

Included Modules

Defined in:

classification/random_forest_classifier.cr

Constructors

Instance Method Summary

Instance methods inherited from module CrystalML::Classifier

predict(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64))
predict(data : Array(Array(Float64)) | Crysda::DataFrame) : Tensor(Float64, CPU(Float64))
predict

Instance methods inherited from class CrystalML::SupervisedEstimator

fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64)))
fit(data : Tensor(Float64, CPU(Float64)) | Array(Array(Float64)) | Crysda::DataFrame, target : Tensor(Float64, CPU(Float64)) | Array(Array(Float64)) | Array(Float64) | Crysda::DataFrame)
fit

Constructor Detail

def self.new(n_trees : Int32 = 100, max_depth : Int32 = 10, min_size : Int32 = 2) #

[View source]

Instance Method Detail

def build_tree(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64))) : DecisionTreeClassifier #

[View source]
def fit(data : Tensor(Float64, CPU(Float64)), target : Tensor(Float64, CPU(Float64))) #

[View source]
def max_depth : Int32 #

[View source]
def max_depth=(max_depth : Int32) #

[View source]
def min_size : Int32 #

[View source]
def min_size=(min_size : Int32) #

[View source]
def n_trees : Int32 #

[View source]
def n_trees=(n_trees : Int32) #

[View source]
def predict(data : Tensor(Float64, CPU(Float64))) : Tensor(Float64, CPU(Float64)) #

[View source]
def trees : Array(DecisionTreeClassifier) #

[View source]
def trees=(trees : Array(DecisionTreeClassifier)) #

[View source]