module Indexable(T)
Overview
A container that allows accessing elements via a numeric index.
Indexing starts at 0. A negative index is assumed to be
relative to the end of the container: -1 indicates the last element,
-2 is the next to last element, and so on.
Types including this module are typically Array-like types.
Stability guarantees
Several methods in Indexable, such as #bsearch and #cartesian_product,
require the collection to be stable; that is, calling #each(&) over and
over again should always yield the same elements, provided the collection is
not mutated between the calls. In particular, #each(&) itself should not
mutate the collection throughout the loop. Stability of an Indexable is
guaranteed if the following criteria are met:
#unsafe_fetchand#sizedo not mutate the collection#each(&)and#each_index(&)are not overridden
The standard library assumes that all including types of Indexable are
always stable. It is undefined behavior to implement an Indexable that is
not stable or only conditionally stable.
Included Modules
Direct including types
Defined in:
indexable.crClass Method Summary
- .cartesian_product(indexables : Indexable(Indexable))
-
.each_cartesian(indexables : Indexable(Indexable), reuse = false, &)
Yields each ordered combination of the elements taken from each of the indexables as
Arrays. -
.each_cartesian(indexables : Indexable(Indexable), reuse = false)
Returns an iterator that enumerates the ordered combinations of elements taken from the indexables as
Arrays.
Instance Method Summary
-
#[](index : Int)
Returns the element at the given index.
-
#[]?(index : Int)
Returns the element at the given index.
-
#bsearch(& : T -> _)
By using binary search, returns the first element for which the passed block returns a truthy value.
-
#bsearch_index(& : T, Int32 -> _)
By using binary search, returns the index of the first element for which the passed block returns a truthy value.
- #cartesian_product(*others : Indexable)
-
#combinations(size : Int = self.size)
Returns an
Arraywith all possible combinations of size ofself. -
#dig(index : Int, *subindexes)
Traverses the depth of a structure and returns the value, otherwise raises
IndexError. -
#dig?(index : Int, *subindexes)
Traverses the depth of a structure and returns the value.
-
#each(& : T -> )
Calls the given block once for each element in
self, passing that element as a parameter. -
#each
Returns an
Iteratorfor the elements ofself. -
#each(*, start : Int, count : Int, & : T -> )
Calls the given block once for
countnumber of elements inselfstarting from indexstart, passing each element as a parameter. -
#each(*, within range : Range, & : T -> )
Calls the given block once for all elements at indices within the given
range, passing each element as a parameter. -
#each_cartesian(*others : Indexable, &)
Yields each ordered combination of the elements taken from each of
selfand others as aTuple. -
#each_cartesian(*others : Indexable)
Returns an iterator that enumerates the ordered combinations of elements taken from each of
selfand others asTuples. -
#each_combination(size : Int = self.size, reuse = false, &) : Nil
Yields each possible combination of size of
self. -
#each_combination(size : Int = self.size, reuse = false)
Returns an
Iteratorover each possible combination of size ofself. -
#each_index(& : Int32 -> ) : Nil
Calls the given block once for each index in
self, passing that index as a parameter. -
#each_index
Returns an
Iteratorfor each index inself. -
#each_index(*, start : Int, count : Int, &)
Calls the given block once for
countnumber of indices inselfstarting from indexstart, passing each index as a parameter. -
#each_permutation(size : Int = self.size, reuse = false, &) : Nil
Yields each possible permutation of size of
self. -
#each_permutation(size : Int = self.size, reuse = false)
Returns an
Iteratorover each possible permutation of size ofself. -
#each_repeated_combination(size : Int = self.size, reuse = false, &) : Nil
Yields each possible combination with repeated elements of size of
self. -
#each_repeated_combination(size : Int = self.size, reuse = false)
Returns an
Iteratorover each possible combination with repeated elements of size ofself. -
#empty? : Bool
Returns
trueifselfis empty,falseotherwise. - #equals?(other : Indexable, &) : Bool
-
#equals?(other, &)
Determines if
selfequals other according to a comparison done by the given block. -
#fetch(index : Int, &)
Returns the element at the given index, if in bounds, otherwise executes the given block with the index and returns its value.
-
#fetch(index, default)
Returns the value at the index given by index, or when not found the value given by default.
-
#first(&)
:inherited:
- #hash(hasher)
-
#index(object, offset : Int = 0)
Returns the index of the first appearance of object in
selfstarting from the given offset, ornilif object is not inself. -
#index(offset : Int = 0, & : T -> )
Returns the index of the first object in
selffor which the block is truthy, starting from the given offset, ornilif no match is found. -
#index!(obj, offset : Int = 0)
Returns the index of the first appearance of obj in
selfstarting from the given offset. -
#index!(offset : Int = 0, & : T -> )
Returns the index of the first object in
selffor which the block is truthy, starting from the given offset. -
#join(separator : String | Char | Number = "") : String
Optimized version of
Enumerable#jointhat performs better when all of the elements in this indexable are strings: the total string bytesize to return can be computed before creating the final string, which performs better because there's no need to do reallocations. -
#last : T
Returns the last element of
selfif it's not empty, or raisesIndexError. -
#last(&)
Returns the last element of
selfif it's not empty, or the given block's value. -
#last? : T | Nil
Returns the last element of
selfif it's not empty, ornil. -
#permutations(size : Int = self.size) : Array(Array(T))
Returns an
Arraywith all possible permutations of size ofself. -
#repeated_combinations(size : Int = self.size) : Array(Array(T))
Returns an
Arraywith all possible combinations with repeated elements of size ofself. -
#reverse_each(& : T -> ) : Nil
Same as
#each, but works in reverse. -
#reverse_each
Returns an
Iteratorover the elements ofselfin reverse order. -
#rindex(value, offset = size - 1)
Returns the index of the last appearance of value in
self, ornilif the value is not inself. -
#rindex(offset = size - 1, & : T -> )
Returns the index of the first object in
selffor which the block is truthy, starting from the last object, ornilif no match is found. -
#rindex!(value, offset = size - 1)
Returns the index of the last appearance of value in
self, ornilif the value is not inself. -
#rindex!(offset = size - 1, & : T -> )
Returns the index of the first object in
selffor which the block is truthy, starting from the last object, ornilif no match is found. -
#sample(n : Int, random : Random = Random::DEFAULT) : Array(T)
Returns an
Arrayof n random elements fromself, using the given random number generator. -
#sample(random : Random = Random::DEFAULT)
Optimized version of
Enumerable#samplethat runs in O(1) time. -
#size
Returns the number of elements in this container.
-
#to_a : Array(T)
Returns an
Arraywith all the elements in the collection. -
#unsafe_fetch(index : Int)
Returns the element at the given index, without doing any bounds check.
-
#values_at(*indexes : Int)
Returns a
Tuplepopulated with the elements at the given indexes.
Instance methods inherited from module Enumerable(T)
accumulate(initial : U) : Array(U) forall Uaccumulate : Array(T)
accumulate(initial : U, &block : U, T -> U) : Array(U) forall U
accumulate(&block : T, T -> T) : Array(T) accumulate, all?(& : T -> ) : Bool
all?(pattern) : Bool
all? : Bool all?, any?(& : T -> ) : Bool
any?(pattern) : Bool
any? : Bool any?, chunks(&block : T -> U) forall U chunks, compact_map(& : T -> _) compact_map, count(& : T -> ) : Int32
count(item) : Int32 count, cycle(n, & : T -> ) : Nil
cycle(& : T -> ) : Nil cycle, each(& : T -> ) each, each_cons(count : Int, reuse = false, &) each_cons, each_cons_pair(& : T, T -> ) : Nil each_cons_pair, each_slice(count : Int, reuse = false, &) each_slice, each_with_index(offset = 0, &) each_with_index, each_with_object(obj : U, & : T, U -> ) : U forall U each_with_object, empty? : Bool empty?, find(if_none = nil, & : T -> ) find, find!(& : T -> ) : T find!, first(&)
first(count : Int) : Array(T)
first : T first, first? : T | Nil first?, flat_map(& : T -> _) flat_map, group_by(& : T -> U) forall U group_by, in_groups_of(size : Int, filled_up_with : U = nil) forall U
in_groups_of(size : Int, filled_up_with : U = nil, reuse = false, &) forall U in_groups_of, in_slices_of(size : Int) : Array(Array(T)) in_slices_of, includes?(obj) : Bool includes?, index(& : T -> ) : Int32 | Nil
index(obj) : Int32 | Nil index, index!(& : T -> ) : Int32
index!(obj) : Int32 index!, index_by(& : T -> U) : Hash(U, T) forall U index_by, join(io : IO, separator = "") : Nil
join(separator, io : IO) : Nil
join(separator = "") : String
join(io : IO, separator = "", & : T, IO -> )
join(separator, io : IO, &)
join(separator = "", & : T -> ) join, map(& : T -> U) : Array(U) forall U map, map_with_index(offset = 0, & : T, Int32 -> U) : Array(U) forall U map_with_index, max(count : Int) : Array(T)
max : T max, max? : T | Nil max?, max_by(& : T -> U) : T forall U max_by, max_by?(& : T -> U) : T | Nil forall U max_by?, max_of(& : T -> U) : U forall U max_of, max_of?(& : T -> U) : U | Nil forall U max_of?, min(count : Int) : Array(T)
min : T min, min? : T | Nil min?, min_by(& : T -> U) : T forall U min_by, min_by?(& : T -> U) : T | Nil forall U min_by?, min_of(& : T -> U) : U forall U min_of, min_of?(& : T -> U) : U | Nil forall U min_of?, minmax : Tuple(T, T) minmax, minmax? : Tuple(T | Nil, T | Nil) minmax?, minmax_by(& : T -> U) : Tuple(T, T) forall U minmax_by, minmax_by?(& : T -> U) : Tuple(T, T) | Tuple(Nil, Nil) forall U minmax_by?, minmax_of(& : T -> U) : Tuple(U, U) forall U minmax_of, minmax_of?(& : T -> U) : Tuple(U, U) | Tuple(Nil, Nil) forall U minmax_of?, none?(& : T -> ) : Bool
none?(pattern) : Bool
none? : Bool none?, one?(& : T -> ) : Bool
one?(pattern) : Bool
one? : Bool one?, partition(& : T -> ) : Tuple(Array(T), Array(T))
partition(type : U.class) forall U partition, product(initial : Number)
product
product(initial : Number, & : T -> )
product(& : T -> _) product, reduce(memo, &)
reduce(&) reduce, reduce?(&) reduce?, reject(& : T -> )
reject(type : U.class) forall U
reject(pattern) : Array(T) reject, sample(n : Int, random : Random = Random::DEFAULT) : Array(T)
sample(random : Random = Random::DEFAULT) : T sample, select(& : T -> )
select(type : U.class) : Array(U) forall U
select(pattern) : Array(T) select, size : Int32 size, skip(count : Int) skip, skip_while(& : T -> ) : Array(T) skip_while, sum(initial)
sum
sum(initial, & : T -> )
sum(& : T -> ) sum, take_while(& : T -> ) : Array(T) take_while, tally(hash)
tally : Hash(T, Int32) tally, tally_by(hash, &)
tally_by(&block : T -> U) : Hash(U, Int32) forall U tally_by, to_a to_a, to_h
to_h(& : T -> Tuple(K, V)) forall K, V to_h, to_set : Set(T) to_set, zip(*others : Indexable | Iterable | Iterator, &)
zip(*others : Indexable | Iterable | Iterator) zip, zip?(*others : Indexable | Iterable | Iterator, &)
zip?(*others : Indexable | Iterable | Iterator) zip?
Class methods inherited from module Enumerable(T)
element_type(x)
element_type
Instance methods inherited from module Iterable(T)
chunk(reuse = false, &block : T -> U) forall U
chunk,
chunk_while(reuse : Bool | Array(T) = false, &block : T, T -> B) forall B
chunk_while,
cycle(n)cycle cycle, each each, each_cons(count : Int, reuse = false) each_cons, each_cons_pair each_cons_pair, each_slice(count : Int, reuse = false) each_slice, each_with_index(offset = 0) each_with_index, each_with_object(obj) each_with_object, slice_after(reuse : Bool | Array(T) = false, &block : T -> B) forall B
slice_after(pattern, reuse : Bool | Array(T) = false) slice_after, slice_before(reuse : Bool | Array(T) = false, &block : T -> B) forall B
slice_before(pattern, reuse : Bool | Array(T) = false) slice_before, slice_when(reuse : Bool | Array(T) = false, &block : T, T -> B) forall B slice_when
Class Method Detail
Returns an Array of all ordered combinations of elements taken from each
of the indexables as Arrays.
Traversal of elements starts from the last Indexable. If indexables is
empty, the returned product contains exactly one empty Array.
#cartesian_product is preferred over this class method when the quantity
of indexables is known in advance.
Indexable.cartesian_product([[1, 2, 3], [4, 5]]) # => [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]
Yields each ordered combination of the elements taken from each of the
indexables as Arrays.
Traversal of elements starts from the last Indexable. If indexables is
empty, yields an empty Array exactly once.
#each_cartesian is preferred over this class method when the quantity of
indexables is known in advance.
Indexable.each_cartesian([%w[Alice Bob Carol], [1, 2]]) do |name, n|
puts "#{n}. #{name}"
end
Prints
1. Alice
2. Alice
1. Bob
2. Bob
1. Carol
2. Carol
By default, a new Array is created and yielded for each combination.
- If reuse is an
Array, it will be reused - If reuse is truthy, the method will create a new
Arrayand reuse it - If reuse is falsey, no
Arrays will be reused.
This can be used to prevent many memory allocations when each combination of interest is to be used in a read-only fashion.
Returns an iterator that enumerates the ordered combinations of elements
taken from the indexables as Arrays.
Traversal of elements starts from the last Indexable. If indexables is
empty, the returned iterator produces one empty Array, then stops.
#each_cartesian is preferred over this class method when the quantity of
indexables is known in advance.
iter = Indexable.each_cartesian([%w[N S], %w[E W]])
iter.next # => ["N", "E"]
iter.next # => ["N", "W"]
iter.next # => ["S", "E"]
iter.next # => ["S", "W"]
iter.next # => Iterator::Stop::INSTANCE
By default, a new Array is created and returned for each combination.
- If reuse is an
Array, it will be reused - If reuse is truthy, the method will create a new
Arrayand reuse it - If reuse is falsey, no
Arrays will be reused.
This can be used to prevent many memory allocations when each combination of interest is to be used in a read-only fashion.
Instance Method Detail
Returns the element at the given index.
Negative indices can be used to start counting from the end of the array.
Raises IndexError if trying to access an element outside the array's range.
ary = ['a', 'b', 'c']
ary[0] # => 'a'
ary[2] # => 'c'
ary[-1] # => 'c'
ary[-2] # => 'b'
ary[3] # raises IndexError
ary[-4] # raises IndexError
Returns the element at the given index.
Negative indices can be used to start counting from the end of the array.
Returns nil if trying to access an element outside the array's range.
ary = ['a', 'b', 'c']
ary[0]? # => 'a'
ary[2]? # => 'c'
ary[-1]? # => 'c'
ary[-2]? # => 'b'
ary[3]? # nil
ary[-4]? # nil
By using binary search, returns the first element for which the passed block returns a truthy value.
If the block returns a falsey value, the element to be found lies behind. If the block returns a truthy value, the element to be found is itself or lies in front.
Binary search needs the collection to be sorted in regards to the search criterion.
Returns nil if the block didn't return a truthy value for any element.
[2, 5, 7, 10].bsearch { |x| x >= 4 } # => 5
[2, 5, 7, 10].bsearch { |x| x > 10 } # => nil
By using binary search, returns the index of the first element for which the passed block returns a truthy value.
If the block returns a falsey value, the element to be found lies behind. If the block returns a truthy value, the element to be found is itself or lies in front.
Binary search needs the collection to be sorted in regards to the search criterion.
Returns nil if the block didn't return a truthy value for any element.
[2, 5, 7, 10].bsearch_index { |x, i| x >= 4 } # => 1
[2, 5, 7, 10].bsearch_index { |x, i| x > 10 } # => nil
Returns an Array of all ordered combinations of elements taken from each
of self and others as Tuples.
Traversal of elements starts from the last Indexable argument.
[1, 2, 3].cartesian_product({'a', 'b'}) # => [{1, 'a'}, {1, 'b'}, {2, 'a'}, {2, 'b'}, {3, 'a'}, {3, 'b'}]
['a', 'b'].cartesian_product({1, 2}, {'c', 'd'}).map &.join # => ["a1c", "a1d", "a2c", "a2d", "b1c", "b1d", "b2c", "b2d"]
Returns an Array with all possible combinations of size of self.
a = [1, 2, 3]
a.combinations # => [[1, 2, 3]]
a.combinations(1) # => [[1], [2], [3]]
a.combinations(2) # => [[1, 2], [1, 3], [2, 3]]
a.combinations(3) # => [[1, 2, 3]]
a.combinations(0) # => [[]]
a.combinations(4) # => []
Traverses the depth of a structure and returns the value, otherwise
raises IndexError.
ary = [{1, 2, 3, {4, 5, 6}}]
ary.dig(0, 3, 2) # => 6
ary.dig(0, 3, 3) # raises IndexError
Traverses the depth of a structure and returns the value.
Returns nil if not found.
ary = [{1, 2, 3, {4, 5, 6}}]
ary.dig?(0, 3, 2) # => 6
ary.dig?(0, 3, 3) # => nil
Calls the given block once for each element in self, passing that
element as a parameter.
a = ["a", "b", "c"]
a.each { |x| print x, " -- " }
produces:
a -- b -- c --
Returns an Iterator for the elements of self.
a = ["a", "b", "c"]
iter = a.each
iter.next # => "a"
iter.next # => "b"
The returned iterator keeps a reference to self: if the array
changes, the returned values of the iterator change as well.
Calls the given block once for count number of elements in self
starting from index start, passing each element as a parameter.
Negative indices count backward from the end of the array. (-1 is the last element).
Raises IndexError if the starting index is out of range.
Raises ArgumentError if count is a negative number.
array = ["a", "b", "c", "d", "e"]
array.each(start: 1, count: 3) { |x| print x, " -- " }
produces:
b -- c -- d --
Calls the given block once for all elements at indices within the given
range, passing each element as a parameter.
Raises IndexError if the starting index is out of range.
array = ["a", "b", "c", "d", "e"]
array.each(within: 1..3) { |x| print x, " -- " }
produces:
b -- c -- d --
Yields each ordered combination of the elements taken from each of self
and others as a Tuple.
Traversal of elements starts from the last Indexable argument.
["Alice", "Bob"].each_cartesian({1, 2, 3}) do |name, n|
puts "#{n}. #{name}"
end
Prints
1. Alice
2. Alice
3. Alice
1. Bob
2. Bob
3. Bob
Returns an iterator that enumerates the ordered combinations of elements
taken from each of self and others as Tuples.
Traversal of elements starts from the last Indexable argument.
iter = {1, 2, 3}.each_cartesian({'a', 'b'})
iter.next # => {1, 'a'}
iter.next # => {1, 'b'}
iter.next # => {2, 'a'}
iter.next # => {2, 'b'}
iter.next # => {3, 'a'}
iter.next # => {3, 'b'}
iter.next # => Iterator::Stop::INSTANCE
Yields each possible combination of size of self.
a = [1, 2, 3]
sums = [] of Int32
a.each_combination(2) { |p| sums << p.sum } # => nil
sums # => [3, 4, 5]
By default, a new array is created and yielded for each combination.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
Returns an Iterator over each possible combination of size of self.
iter = [1, 2, 3, 4].each_combination(3)
iter.next # => [1, 2, 3]
iter.next # => [1, 2, 4]
iter.next # => [1, 3, 4]
iter.next # => [2, 3, 4]
iter.next # => #<Iterator::Stop>
By default, a new array is created and returned for each combination.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
Calls the given block once for each index in self, passing that
index as a parameter.
a = ["a", "b", "c"]
a.each_index { |x| print x, " -- " }
produces:
0 -- 1 -- 2 --
Returns an Iterator for each index in self.
a = ["a", "b", "c"]
iter = a.each_index
iter.next # => 0
iter.next # => 1
The returned iterator keeps a reference to self. If the array
changes, the returned values of the iterator will change as well.
Calls the given block once for count number of indices in self
starting from index start, passing each index as a parameter.
Negative indices count backward from the end of the array. (-1 is the last element).
Raises IndexError if the starting index is out of range.
Raises ArgumentError if count is a negative number.
array = ["a", "b", "c", "d", "e"]
array.each_index(start: -3, count: 2) { |x| print x, " -- " }
produces:
2 -- 3 --
Yields each possible permutation of size of self.
a = [1, 2, 3]
sums = [] of Int32
a.each_permutation(2) { |p| sums << p.sum } # => nil
sums # => [3, 4, 3, 5, 4, 5]
By default, a new array is created and yielded for each permutation.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
Returns an Iterator over each possible permutation of size of self.
iter = [1, 2, 3].each_permutation
iter.next # => [1, 2, 3]
iter.next # => [1, 3, 2]
iter.next # => [2, 1, 3]
iter.next # => [2, 3, 1]
iter.next # => [3, 1, 2]
iter.next # => [3, 2, 1]
iter.next # => #<Iterator::Stop>
By default, a new array is created and returned for each permutation.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
Yields each possible combination with repeated elements of size of
self.
a = [1, 2, 3]
sums = [] of Int32
a.each_repeated_combination(2) { |p| sums << p.sum } # => nil
sums # => [2, 3, 4, 4, 5, 6]
By default, a new array is created and yielded for each combination.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
Returns an Iterator over each possible combination with repeated elements
of size of self.
iter = [1, 2, 3].each_repeated_combination(2)
iter.next # => [1, 1]
iter.next # => [1, 2]
iter.next # => [1, 3]
iter.next # => [2, 2]
iter.next # => [2, 3]
iter.next # => [3, 3]
iter.next # => #<Iterator::Stop>
By default, a new array is created and returned for each combination.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
Returns true if self is empty, false otherwise.
([] of Int32).empty? # => true
([1]).empty? # => false
Determines if self equals other according to a comparison
done by the given block.
If self's size is the same as other's size, this method yields
elements from self and other in tandem: if the block returns true
for all of them, this method returns true. Otherwise it returns false.
a = [1, 2, 3]
b = ["a", "ab", "abc"]
a.equals?(b) { |x, y| x == y.size } # => true
a.equals?(b) { |x, y| x == y } # => false
Returns the element at the given index, if in bounds, otherwise executes the given block with the index and returns its value.
a = [:foo, :bar]
a.fetch(0) { :default_value } # => :foo
a.fetch(2) { :default_value } # => :default_value
a.fetch(2) { |index| index * 3 } # => 6
Returns the value at the index given by index, or when not found the value given by default.
a = [:foo, :bar]
a.fetch(0, :default_value) # => :foo
a.fetch(2, :default_value) # => :default_value
Returns the index of the first appearance of object in self
starting from the given offset, or nil if object is not in self.
[1, 2, 3, 1, 2, 3].index(2, offset: 2) # => 4
Returns the index of the first object in self for which the block
is truthy, starting from the given offset, or nil if no match
is found.
[1, 2, 3, 1, 2, 3].index(offset: 2) { |x| x < 2 } # => 3
Returns the index of the first appearance of obj in self
starting from the given offset. Raises Enumerable::NotFoundError if
obj is not in self.
[1, 2, 3, 1, 2, 3].index!(2, offset: 2) # => 4
Returns the index of the first object in self for which the block
is truthy, starting from the given offset. Raises
Enumerable::NotFoundError if no match is found.
[1, 2, 3, 1, 2, 3].index!(offset: 2) { |x| x < 2 } # => 3
Optimized version of Enumerable#join that performs better when
all of the elements in this indexable are strings: the total string
bytesize to return can be computed before creating the final string,
which performs better because there's no need to do reallocations.
Returns the last element of self if it's not empty, or raises IndexError.
([1, 2, 3]).last # => 3
([] of Int32).last # raises IndexError
Returns the last element of self if it's not empty, or the given block's value.
([1, 2, 3]).last { 4 } # => 3
([] of Int32).last { 4 } # => 4
Returns the last element of self if it's not empty, or nil.
([1, 2, 3]).last? # => 3
([] of Int32).last? # => nil
Returns an Array with all possible permutations of size of self.
a = [1, 2, 3]
a.permutations # => [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutations(1) # => [[1],[2],[3]]
a.permutations(2) # => [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
a.permutations(3) # => [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutations(0) # => [[]]
a.permutations(4) # => []
Returns an Array with all possible combinations with repeated elements of
size of self.
a = [1, 2, 3]
pp a.repeated_combinations
pp a.repeated_combinations(2)
produces:
[[1, 1, 1],
[1, 1, 2],
[1, 1, 3],
[1, 2, 2],
[1, 2, 3],
[1, 3, 3],
[2, 2, 2],
[2, 2, 3],
[2, 3, 3],
[3, 3, 3]]
[[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3]]
Returns the index of the last appearance of value in self, or
nil if the value is not in self.
If offset is given, it defines the position to end the search (elements beyond this point are ignored).
[1, 2, 3, 2, 3].rindex(2) # => 3
[1, 2, 3, 2, 3].rindex(2, offset: 2) # => 1
Returns the index of the first object in self for which the block
is truthy, starting from the last object, or nil if no match
is found.
If offset is given, the search starts from that index towards the
first elements in self.
[1, 2, 3, 2, 3].rindex { |x| x < 3 } # => 3
[1, 2, 3, 2, 3].rindex(offset: 2) { |x| x < 3 } # => 1
Returns the index of the last appearance of value in self, or
nil if the value is not in self.
If offset is given, it defines the position to end the search (elements beyond this point are ignored).
[1, 2, 3, 2, 3].rindex(2) # => 3
[1, 2, 3, 2, 3].rindex(2, offset: 2) # => 1
Raises Enumerable::NotFoundError if value is not in self.
Returns the index of the first object in self for which the block
is truthy, starting from the last object, or nil if no match
is found.
If offset is given, the search starts from that index towards the
first elements in self.
[1, 2, 3, 2, 3].rindex { |x| x < 3 } # => 3
[1, 2, 3, 2, 3].rindex(offset: 2) { |x| x < 3 } # => 1
Raises Enumerable::NotFoundError if no match is found.
Returns an Array of n random elements from self, using the given
random number generator. All elements have equal probability of being
drawn. Sampling is done without replacement; if n is larger than the size
of this collection, the returned Array has the same size as self.
Raises ArgumentError if n is negative.
[1, 2, 3, 4, 5].sample(2) # => [3, 5]
{1, 2, 3, 4, 5}.sample(2) # => [3, 4]
{1, 2, 3, 4, 5}.sample(2, Random.new(1)) # => [1, 5]
If self is not empty and n is equal to 1, calls #sample(random) exactly
once. Thus, random will be left in a different state compared to the
implementation in Enumerable.
Optimized version of Enumerable#sample that runs in O(1) time.
a = [1, 2, 3]
a.sample # => 3
a.sample # => 1
a.sample(Random.new(1)) # => 2
Returns an Array with all the elements in the collection.
{1, 2, 3}.to_a # => [1, 2, 3]
Returns the element at the given index, without doing any bounds check.
Indexable makes sure to invoke this method with index in 0...size,
so converting negative indices to positive ones is not needed here.
Clients never invoke this method directly. Instead, they access
elements with #[](index) and #[]?(index).
This method should only be directly invoked if you are absolutely sure the index is in bounds, to avoid a bounds check for a small boost of performance.
Returns a Tuple populated with the elements at the given indexes.
Raises IndexError if any index is invalid.
["a", "b", "c", "d"].values_at(0, 2) # => {"a", "c"}