class SHAInet::Data
- SHAInet::Data
- Reference
- Object
Direct Known Subclasses
Defined in:
shainet/data/data.crConstant Summary
-
Log =
::Log.for(self)
Constructors
Class Method Summary
-
.new_with_csv_input_target(csv_file_path, input_column_range, target_column)
@data_pairs : Takes a path to a CSV file, a range of inputs and the index of the target column.
Instance Method Summary
-
#array_for_label(a_label)
Takes a label as a String and returns the corresponding output array
- #data
- #denormalize(x, xmin, xmax)
- #denormalize_outputs(outputs : Array(GenNum))
- #inputs : Array(Array(Float64))
-
#label_for_array(an_array)
Takes an output array of 0,1s and returns the corresponding label
- #labels : Array(String)
-
#labels=(label_array)
Receives an array of labels (String or Symbol) and sets them for this Data object
- #normalize(x, xmin, xmax)
- #normalize_inputs(inputs : Array(GenNum))
- #normalize_min_max(data : Array(Array(Float64)))
- #normalize_min_max
- #normalize_outputs(outputs : Array(GenNum))
- #normalized_inputs : Array(Array(Float64))
- #normalized_inputs=(normalized_inputs : Array(Array(Float64)))
- #normalized_outputs : Array(Array(Float64))
- #normalized_outputs=(normalized_outputs : Array(Array(Float64)))
- #outputs : Array(Array(Float64))
- #outputs=(outputs : Array(Array(Float64)))
- #raw_data
- #size
-
#split(factor)
Splits the receiver in a TrainingData and a TestData object according to factor
- #to_onehot(data : Array(Array(Float64)), vector_size : Int32)
Constructor Detail
Class Method Detail
def self.new_with_csv_input_target(csv_file_path, input_column_range, target_column)
#
@data_pairs : Takes a path to a CSV file, a range of inputs and the index of the target column. Returns a SHAInet::Data object.
data = SHAInet::Data.new_with_csv_input_target("iris.csv", 0..3, 4)
Instance Method Detail
def labels=(label_array)
#
Receives an array of labels (String or Symbol) and sets them for this Data object