class SHAInet::CNNData
- SHAInet::CNNData
- SHAInet::Data
- Reference
- Object
Defined in:
shainet/data/cnn_data.crConstructors
-
.new(inputs : Array(Array(Float64)), outputs : Array(Array(Float64)))
When inputs are one-dimentional
-
.new(inputs : CNNinputData, outputs : CNNoutputData)
When inputs are three-dimentional
Instance Method Summary
- #data_pairs : Array({input: Array(Array(Array(Float64))), output: Array(Float64)})
-
#for_mnist_conv
Normalize input to 3D image and change expected outputs to 1-hot vector
- #vector_to_2d(vector : Array(Float64), window_size : Int32)
Instance methods inherited from class SHAInet::Data
array_for_label(a_label)
array_for_label,
data
data,
denormalize(x, xmin, xmax)
denormalize,
denormalize_outputs(outputs : Array(GenNum))
denormalize_outputs,
inputs : Array(Array(Float64))
inputs,
label_for_array(an_array)
label_for_array,
labels : Array(String)
labels,
labels=(label_array)
labels=,
normalize(x, xmin, xmax)
normalize,
normalize_inputs(inputs : Array(GenNum))
normalize_inputs,
normalize_min_max(data : Array(Array(Float64)))normalize_min_max normalize_min_max, normalize_outputs(outputs : Array(GenNum)) normalize_outputs, normalized_inputs : Array(Array(Float64)) normalized_inputs, normalized_inputs=(normalized_inputs : Array(Array(Float64))) normalized_inputs=, normalized_outputs : Array(Array(Float64)) normalized_outputs, normalized_outputs=(normalized_outputs : Array(Array(Float64))) normalized_outputs=, outputs : Array(Array(Float64)) outputs, outputs=(outputs : Array(Array(Float64))) outputs=, raw_data raw_data, size size, split(factor) split, to_onehot(data : Array(Array(Float64)), vector_size : Int32) to_onehot
Constructor methods inherited from class SHAInet::Data
new(inputs : Array(Array(Float64)), outputs : Array(Array(Float64)))
new
Class methods inherited from class SHAInet::Data
new_with_csv_input_target(csv_file_path, input_column_range, target_column)
new_with_csv_input_target
Constructor Detail
def self.new(inputs : Array(Array(Float64)), outputs : Array(Array(Float64)))
#
When inputs are one-dimentional
When inputs are three-dimentional
Instance Method Detail
def data_pairs : Array({input: Array(Array(Array(Float64))), output: Array(Float64)})
#