module Secp256k1
Overview
expose the secp256k1 module
Defined in:
bitcoin.crconstants.cr
secp256k1.cr
structs.cr
version.cr
Constant Summary
-
EC_BASE_G =
EC_Point.new(EC_BASE_G_X, EC_BASE_G_Y)
-
EC_BASE_G_COMPRESSED =
BigInt.new((Secp256k1::Util.public_key_compressed_prefix(EC_BASE_G)), 16)
-
The base point G in compressed form is:
-
EC_BASE_G_UNCOMPRESSED =
BigInt.new((Secp256k1::Util.public_key_uncompressed_prefix(EC_BASE_G)), 16)
-
The base point G in uncompressed form is:
-
EC_BASE_G_X =
BigInt.new("79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798", 16)
-
The commonly used base point G coordinates x, y; any other point that satisfies y^2 = x^3 + 7 would also do:
-
EC_BASE_G_Y =
BigInt.new("483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8", 16)
-
EC_COFACTOR_H =
BigInt.new("01", 16)
-
EC_FACTOR_A =
BigInt.new("0000000000000000000000000000000000000000000000000000000000000000", 16)
-
The curve E: y^2 = x^3 + ax + b over F_p is defined by a, b: As the a constant is zero, the ax term in the curve equation is always zero, hence the curve equation becomes y^2 = x^3 + 7.
-
EC_FACTOR_B =
BigInt.new("0000000000000000000000000000000000000000000000000000000000000007", 16)
-
EC_ORDER_N =
BigInt.new("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
-
Finally, the order n of G and the cofactor h are:
-
EC_PARAM_PRIME =
BigInt.new("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 16)
-
The elliptic curve domain parameters over F_p associated with a Koblitz curve Secp256k1 are specified by the sextuple T = (p, a, b, G, n, h) where the finite field F_p is defined by p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1:
-
VERSION =
"0.2.0"