class TensorflowLite::Image::PoseEstimation
- TensorflowLite::Image::PoseEstimation
- Reference
- Object
Included Modules
Defined in:
tflite_image/pose_estimation.crInstance Method Summary
-
#adjust(detections : Array(Output), target_width : Int32, target_height : Int32, offset_left : Int32, offset_top : Int32) : Array(Output)
adjust the detections so they can be applied directly to the source image (or a scaled version in the same aspect ratio)
-
#adjust(detections : Array(Output), image : Canvas, offset_left : Int32, offset_top : Int32) : Array(Output)
adjust the detections so they can be applied directly to the source image (or a scaled version in the same aspect ratio)
-
#process(image : Canvas) : Tuple(Canvas, PoseEstimation::Output)
attempts to classify the object, assumes the canvas has already been prepared
Instance methods inherited from module TensorflowLite::Image::Common
client : Client
client,
detection_adjustments(image : Canvas, scale_mode : Scale = @scaling_mode)detection_adjustments(image_width : Int32, image_height : Int32, scale_mode : Scale = @scaling_mode) detection_adjustments, input_format : Format input_format, labels : Array(String) labels, resolution : Tuple(Int32, Int32) resolution, run(canvas : Canvas, scale_mode : Scale = @scaling_mode, resize_method : StumpyResize::InterpolationMethod = :bilinear) run, scaling_mode : Scale scaling_mode, scaling_mode=(scaling_mode : Scale) scaling_mode=
Constructor methods inherited from module TensorflowLite::Image::Common
new(client : Client, labels : Array(String) | Nil = nil, scaling_mode : Scale = DEFAULT_SCALE_MODE, input_format : Format | Nil = nil, output_format : Format | Nil = nil)
new
Instance Method Detail
adjust the detections so they can be applied directly to the source image (or a scaled version in the same aspect ratio)
you can run detection_adjustments
just once and then apply them to detections for each invokation using this function
adjust the detections so they can be applied directly to the source image (or a scaled version in the same aspect ratio)
you can run detection_adjustments
just once and then apply them to detections for each invokation using this function
attempts to classify the object, assumes the canvas has already been prepared