class Crypto::Prime

Overview

The set of all prime numbers. Adapted from the Ruby implementation at https://github.com/ruby/prime.

Example

Prime.each(100) do |prime|
  p prime # => 2, 3, 5, 7, 11, ...., 97
end

Prime is Enumerable:

Prime.first 5 # => [2, 3, 5, 7, 11]

Generators

A "generator" provides an implementation of enumerating pseudo-prime numbers and it remembers the position of enumeration and upper bound. Furthermore, it is an external iterator of prime enumeration which is compatible with an Enumerator.

Prime::PseudoPrimeGenerator is the base class for generators. There are few implementations of generator.

[Prime::EratosthenesGenerator] Uses Eratosthenes' sieve. [Prime::TrialDivisionGenerator] Uses the trial division method. [Prime::Generator23] Generates all positive integers which are not divisible by either 2 or 3. This sequence is very bad as a pseudo-prime sequence. But this is faster and uses much less memory than the other generators. So, it is suitable for factorizing an integer which is not large but has many prime factors. e.g. for Prime#prime?.

Included Modules

Defined in:

crypto/utils/prime.cr

Class Method Summary

Instance Method Summary

Class Method Detail

def self.coprime?(a, b) #

Returns true if the integer a is coprime (relatively prime) to integer b.

Example

RSA::Math.coprime?(6, 35) # => true
RSA::Math.coprime?(6, 27) # => false

[View source]
def self.each(ubound = nil, generator = EratosthenesGenerator.new, &block : Int::Signed -> ) #

Iterates the given block over all prime numbers.

Parameters

ubound: Optional. An arbitrary positive number. The upper bound of enumeration. The method enumerates prime numbers infinitely if ubound is nil. generator: Optional. An implementation of pseudo-prime generator.

Return value

An evaluated value of the given block at the last time. Or an enumerator which is compatible to an Enumerator if no block given.

Description

Calls block once for each prime number, passing the prime as a parameter.

ubound: Upper bound of prime numbers. The iterator stops after it yields all prime numbers p <= ubound.


[View source]
def self.factorize(value, generator = Generator23.new) #

Returns the factorization of value.

For an arbitrary integer:

p_1**e_1 * p_2**e_2 * ... * p_n**e_n,
``

factorize returns an array of pairs of integers:

[[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]].


Each pair consists of a prime number -- a prime factor --
and a natural number -- its exponent (multiplicity).

## Parameters
`value`: An arbitrary integer.
`generator`: Optional. A pseudo-prime generator.
             `generator`.succ must return the next
             pseudo-prime number in ascending order.
             It must generate all prime numbers,
             but may also generate non-prime numbers, too.

### Exceptions
`DivisionByZeroError`: when `value` is zero.

## Example

Prime.factorize(45) #=> [[3, 2], [5, 1]] 3**2 * 5 #=> 45


[View source]
def self.int_from_factorization(pd : Indexable(Indexable(Int))) #

Re-composes a prime factorization and returns the product.

For the decomposition:

  [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]],

it returns:

  p_1**e_1 * p_2**e_2 * ... * p_n**e_n.

Parameters

pd: Array of pairs of integers. Each pair consists of a prime number -- a prime factor -- and a natural number -- its exponent (multiplicity).

Example

Prime.int_from_factorization([[3, 2], [5, 1]]) # => 45
3**2 * 5                                       # => 45

[View source]
def self.prime?(n, k = 10) #

Returns true if value is a prime number, else returns false.

== Parameters

value: an arbitrary integer to be checked.


[View source]
def self.random(start, stop, count, generator = Generator23.new, random = Random::DEFAULT) #

Return count random primes in the given range.


[View source]
def self.random(bits, random = Random::DEFAULT) #

[View source]

Instance Method Detail

def each(ubound = nil, generator = EratosthenesGenerator.new, &block : Int::Signed -> ) #

see .each


[View source]
def factorize(value, generator = Generator23.new) #

[View source]
def int_from_factorization(pd : Indexable(Indexable(Int))) #

[View source]
def prime?(n, k = 10) #

see .prime?


[View source]
def random(start, stop, count, generator = Generator23.new, random = Random::DEFAULT) #

see .random


[View source]
def random(bits, random = Random::DEFAULT) #

[View source]