class LA::GeneralMatrix(T)

Overview

generic matrix, heap-allocated

Data are stored in column-major as this is a storage used by LAPACK

See SUPPORTED_TYPES for supported types

Defined in:

matrix/general_matrix.cr

Constructors

Class Method Summary

Instance Method Summary

Instance methods inherited from class LA::Matrix(T)

*(k : Number)
*(k : Complex)
*(m : Matrix(T))
*
, **(other : Int) **, +(k : Number)
+(k : Complex)
+(m : Matrix(T))
+
, -(k : Number | Complex)
-(m : Matrix(T))
-
-
, /(k : Number | Complex) /, ==(other) ==, [](i : Int32, j : Int32)
[](arows : Range(Int32 | Nil, Int32 | Nil), acolumns : Range(Int32 | Nil, Int32 | Nil))
[](row : Int32, acolumns : Range(Int32 | Nil, Int32 | Nil))
[](arows : Range(Int32 | Nil, Int32 | Nil), column : Int32)
[]
, []=(i : Int32, j : Int32, value)
[]=(arows : Range(Int32, Int32), acolumns : Range(Int32, Int32), value)
[]=(row : Int32, acolumns : Range(Int32, Int32), value)
[]=(nrows : Range(Int32, Int32), column : Int32, value)
[]=
, abs(kind : MatrixNorm = MatrixNorm::Frobenius) abs, add!(k : Number, m : Matrix)
add!(m)
add!
, add_mult(a, b : Matrix(T), *, alpha = 1.0, beta = 1.0) add_mult, almost_eq(other : Matrix(T), eps)
almost_eq(other : Matrix(T))
almost_eq
, assume!(flag : MatrixFlags, value : Bool = true) assume!, balance(*, permute = true, scale = true, separate = false) balance, balance!(*, permute = true, scale = true, separate = false) balance!, cat(other : Matrix(T), axis : Axis) cat, cho_solve(b : self, *, overwrite_b = false) cho_solve, cholesky(*, lower = false, dont_clean = false) cholesky, cholesky!(*, lower = false, dont_clean = false) cholesky!, chop(eps = self.tolerance) chop, clear_flags clear_flags, columns columns, conjt conjt, conjt! conjt!, conjtranspose conjtranspose, coshm coshm, cosm cosm, det(*, overwrite_a = false) det, detect(aflags : MatrixFlags = MatrixFlags::All, eps = tolerance) detect, detect?(aflags : MatrixFlags = MatrixFlags::All, eps = tolerance) detect?, diag(offset = 0) diag, each(*, all = false, &) each, each_index(*, all = false, &) each_index, each_lower(*, diagonal = true, all = false, &) each_lower, each_upper(*, diagonal = true, all = false, &) each_upper, each_with_index(*, all = false, &) each_with_index, eigs(*, left = false, overwrite_a = false)
eigs(*, need_left : Bool, need_right : Bool, overwrite_a = false)
eigs(*, b : Matrix(T), need_left : Bool, need_right : Bool, overwrite_a = false, overwrite_b = false)
eigs
, eigvals(*, overwrite_a = false) eigvals, expm(*, schur_fact = false) expm, flags : MatrixFlags flags, hcat(other) hcat, hessenberg
hessenberg(*, calc_q = false)
hessenberg
, hessenberg!
hessenberg!(*, calc_q = false)
hessenberg!
, inspect(io) inspect, inv inv, inv! inv!, kron(b : Matrix(T)) kron, lq(*, overwrite_a = false) lq, lq_r(*, overwrite_a = false) lq_r, lstsq(b : self, method : LSMethod = LSMethod::Auto, *, overwrite_a = false, overwrite_b = false, cond = -1) lstsq, lu(*, overwrite_a = false) lu, lu_factor : LUMatrix(T) lu_factor, lu_factor! : LUMatrix(T) lu_factor!, map(&) map, map!(&) map!, map_with_index(&) map_with_index, map_with_index!(&) map_with_index!, max(axis : Axis) max, min(axis : Axis) min, ncolumns : Int32 ncolumns, norm(kind : MatrixNorm = MatrixNorm::Frobenius) norm, nrows : Int32 nrows, pinv pinv, product(axis : Axis) product, ql(*, overwrite_a = false) ql, ql_r(*, overwrite_a = false) ql_r, qr(*, overwrite_a = false, pivoting = false) qr, qr_r(*, overwrite_a = false, pivoting = false) qr_r, qr_raw(*, overwrite_a = false, pivoting = false) qr_raw, qz(b, overwrite_a = false, overwrite_b = false) qz, rank(eps = self.tolerance, *, method : RankMethod = RankMethod::SVD, overwrite_a = false) rank, reduce(axis : Axis, initial, &) reduce, repmat(arows, acolumns) repmat, rows rows, rq(*, overwrite_a = false) rq, rq_r(*, overwrite_a = false) rq_r, save_csv(filename) save_csv, scale!(k : Number | Complex) scale!, schur(*, overwrite_a = false) schur, shape shape, sinhm sinhm, sinm sinm, size : Tuple(Int32, Int32) size, solve(b : self, *, overwrite_a = false, overwrite_b = false) solve, solvels(b : self, *, overwrite_a = false, overwrite_b = false, cond = -1) solvels, square? square?, sum(axis : Axis) sum, svd(*, overwrite_a = false) svd, svdvals(*, overwrite_a = false) svdvals, t t, t! t!, tanhm tanhm, tanm tanm, to_custom(io, prefix, columns_separator, rows_separator, postfix)
to_custom(prefix, columns_separator, rows_separator, postfix)
to_custom
, to_general to_general, to_imag to_imag, to_matlab(io)
to_matlab
to_matlab
, to_real to_real, to_s(io) to_s, to_unsafe to_unsafe, tolerance tolerance, tr_mult!(a : Matrix(T), *, alpha = 1.0, left = false) tr_mult!, trace trace, transpose transpose, tril(k = 0) tril, tril!(k = 0) tril!, triu(k = 0) triu, triu!(k = 0) triu!, vcat(other) vcat

Class methods inherited from class LA::Matrix(T)

arange(start_val : T, end_val : T, delta = 1.0) arange, block_diag(*args) block_diag, circulant(c) circulant, column(values) column, companion(a) companion, dft(n, scale : DFTScale = DFTScale::None) dft, diag(nrows, ncolumns, value : Number | Complex)
diag(nrows, ncolumns, values)
diag(values)
diag(nrows, ncolumns, &)
diag
, eye(n) eye, fiedler(values) fiedler, from_custom(str : String, prefix, columns_separator, rows_separator, postfix)
from_custom(io, prefix, columns_separator, rows_separator, postfix)
from_custom
, from_matlab(s) from_matlab, hadamard(n) hadamard, hankel(column : Indexable | Matrix, row : Indexable | Matrix | Nil = nil) hankel, helmert(n, full = false) helmert, hilbert(n) hilbert, identity(n) identity, invhilbert(n) invhilbert, invpascal(n, kind : PascalKind = PascalKind::Symmetric) invpascal, kron(a, b) kron, leslie(f, s) leslie, load_csv(filename) load_csv, ones(nrows, ncolumns) ones, pascal(n, kind : PascalKind = PascalKind::Symmetric) pascal, rand(nrows, ncolumns, rng = Random::DEFAULT) rand, repmat(a : Matrix(T), nrows, ncolumns) repmat, row(values) row, toeplitz(column : Indexable | Matrix, row : Indexable | Matrix | Nil = nil) toeplitz, tri(nrows, ncolumns, k = 0) tri, zeros(nrows, ncolumns) zeros

Instance methods inherited from module Enumerable(T)

product(initial : Complex)
product(initial : Complex, &)
product

Constructor Detail

def self.new(nrows : Int32, ncolumns : Int32, values : Indexable, col_major = false, flags : LA::MatrixFlags = MatrixFlags::None) #

Creates matrix with given size and populate elements from values

if col_major is true, values content is just copied to #raw, otherwise a conversion from row-major form is performed Example:

values = [1, 2, 3, 4]
a = GMat.new(2, 2, values)
a.to_aa # => [[1,2],[3,4]]
b = GMat.new(2, 2, values, col_major: true)
b.to_aa # => [[1,3],[2,4]]

[View source]
def self.new(nrows : Int32, ncolumns : Int32, flags : LA::MatrixFlags = MatrixFlags::None) #

Creates zero-initialized matrix of given size

Example: LA::GMat.new(4,4)


[View source]
def self.new(nrows : Int32, ncolumns : Int32, flags : LA::MatrixFlags = MatrixFlags::None, &) #

Creates matrix of given size and then call block to initialize each element

Example: LA::GMat.new(4,4){|i,j| i+j }


[View source]
def self.new(values : Indexable) #

Creates matrix from any Indexable of Indexables

Example:

m = GMat.new([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
  [10, 11, 12],
])

[View source]
def self.new(matrix : Matrix) #

Creates matrix with same content as another matrix


[View source]

Class Method Detail

def self.[](*args) #

Alias for #new


[View source]
def self.columns(*args) #

Creates matrix from a number of columns

Example:

a = GMat.columns([1, 2, 3, 4], [5, 6, 7, 8])
a.to_aa # => [[1, 5], [2, 6], [3, 7], [4, 8]]

[View source]
def self.diag(nrows, ncolumns, values) #

Returns diagonal matrix of given size with diagonal elements taken from array values


[View source]
def self.diag(nrows, ncolumns, &) #

Returns diagonal matrix of given size with diagonal elements equal to block value


[View source]
def self.rows(*args) #

Creates matrix from a number of rows

Example:

a = GMat.rows([1, 2, 3, 4], [5, 6, 7, 8])
a.to_aa # => [[1,2,3,4], [5,6,7,8]]

[View source]

Instance Method Detail

def ==(other : self) #

[View source]
def cat!(other : Matrix(T), dimension) #

Concatenate matrix adding another matrix by dimension Axis::Rows (horizontal) or Axis::Columns (vertical)


[View source]
def clone #

returns copy of matrix


[View source]
def conjtranspose! #

Conjurgate transposes matrix inplace

Currently, transpose of non-square matrix still allocates temporary buffer


[View source]
def dup #

returns copy of matrix


[View source]
def flags : MatrixFlags #

Matrix flags (see MatrixFlags for description)


[View source]
def flags=(flags : MatrixFlags) #

Matrix flags (see MatrixFlags for description)


[View source]
def hcat!(other) #

Concatenate matrix adding another matrix horizontally (so they form a row)


[View source]
def ncolumns : Int32 #

Count of columns in matrix


[View source]
def nrows : Int32 #

Count of rows in matrix


[View source]
def raw : Slice(T) #

Pointer to a raw data


[View source]
def reshape(anrows, ancolumns, col_major = false) #

Returns a matrix with different nrows and ncolumns but same elements (total number of elements must not change)

if col_major is true, just nrows and ncolumns are changed, data kept the same Otherwise, elements are reordered to emulate row-major storage Example:

a = GMat[[1, 2, 3], [4, 5, 6]]
a.reshape(2, 3).to_aa # => [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]
b = GMat[[1, 2, 3], [4, 5, 6]]
this is because in-memory order of values is (1, 4, 2, 5, 3, 6)
b.reshape(2, 3, col_major: true).to_aa # => [[1.0, 5.0], [4.0, 3.0], [2.0, 6.0]]

[View source]
def reshape!(anrows : Int32, ancolumns : Int32, col_major = false) #

Changes nrows and ncolumns of matrix (total number of elements must not change)

if col_major is true, just nrows and ncolumns are changed, data kept the same Otherwise, elements are reordered to emulate row-major storage Example:

a = GMat[[1, 2, 3], [4, 5, 6]]
a.reshape!(2, 3)
a.to_aa # => [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]
b = GMat[[1, 2, 3], [4, 5, 6]]
b.reshape!(2, 3, col_major: true)
this is because in-memory order of values is (1, 4, 2, 5, 3, 6)
b.to_aa # => [[1.0, 5.0], [4.0, 3.0], [2.0, 6.0]]

[View source]
def resize!(anrows : Int32, ancolumns : Int32) #

Change number of rows and columns in matrix.

if new number is higher zero elements are added, if new number is lower, exceeding elements are lost


[View source]
def to_a(col_major = false) #

Converts matrix to plain array of elements if col_major is true, elements are returned as stored inplace, otherwise row-major storage is emulated


[View source]
def to_aa(col_major = false) #

Converts matrix to array of array of elements if col_major is true, elements are returned as stored inplace, otherwise row-major storage is emulated Example:

a = GMat[[1, 2], [3, 4]]
a.to_aa                  # => [[1.0, 2.0],[3.0, 4.0]]
a.to_aa(col_major: true) # => [[1.0, 3.0],[2.0, 4.0]]

[View source]
def to_unsafe #

Returns pointer to raw data, suitable to e.g. use with LAPACK


[View source]
def transpose! #

transposes matrix inplace

Currently, transpose of non-square matrix still allocates temporary buffer


[View source]
def unsafe_fetch(i, j) #

returns element at row i and column j, without performing any checks


[View source]
def unsafe_set(i, j, value) #

sets element at row i and column j to value, without performing any checks


[View source]
def vcat!(other) #

Concatenate matrix adding another matrix vertically (so they form a column)


[View source]