class EvolveNet::TestData
- EvolveNet::TestData
- EvolveNet::Data
- Reference
- Object
Defined in:
evolvenet/data/test_data.crInstance methods inherited from class EvolveNet::Data
array_for_label(a_label)
array_for_label,
confusion_matrix(model)
confusion_matrix,
denormalize(x, xmin, xmax)
denormalize,
denormalize_outputs(outputs : Array(Number))
denormalize_outputs,
inputs : Array(Array(Float32 | Float64 | Int32 | Int64))
inputs,
inputs=(inputs : Array(Array(Float32 | Float64 | Int32 | Int64)))
inputs=,
label_encoder
label_encoder,
label_for_array(an_array)
label_for_array,
labels : Array(String)
labels,
labels=(label_array)
labels=,
normalize(x, xmin, xmax)
normalize,
normalize_inputs(inputs : Array(Number))
normalize_inputs,
normalize_min_max
normalize_min_max,
normalize_outputs(outputs : Array(Number))
normalize_outputs,
normalized_data
normalized_data,
normalized_inputs : Array(Array(Float64))
normalized_inputs,
normalized_inputs=(normalized_inputs : Array(Array(Float64)))
normalized_inputs=,
normalized_outputs : Array(Array(Float64))
normalized_outputs,
normalized_outputs=(normalized_outputs : Array(Array(Float64)))
normalized_outputs=,
one_hot_encoder
one_hot_encoder,
ordinal_encoder
ordinal_encoder,
outputs : Array(Array(Float32 | Float64 | Int32 | Int64))
outputs,
outputs=(outputs : Array(Array(Float32 | Float64 | Int32 | Int64)))
outputs=,
raw_confusion_matrix(model)
raw_confusion_matrix,
raw_data
raw_data,
set_zero_to_average(cols = Array[Int32])
set_zero_to_average,
size
size,
split(factor)
split,
to_onehot(data : Array(Array(Float64)), vector_size : Int32)
to_onehot
Constructor methods inherited from class EvolveNet::Data
new(raw_inputs : Array(Array(Float64)), raw_outputs : Array(Array(Float64)))new(inputs : Array(Array(Number)), outputs : Array(Array(Number)))
new(data : Array(Array(Array(Number)))) new